Gujarati
Hindi
10-2. Parabola, Ellipse, Hyperbola
normal

Number of points on the ellipse $\frac{{{x^2}}}{{50}} + \frac{{{y^2}}}{{20}} = 1$ from which pair of perpendicular tangents are drawn to the ellips $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{9}} = 1$

A

$0$

B

$2$

C

$1$

D

$4$

Solution

For the ellipse $\frac{\mathrm{x}^{2}}{16}+\frac{\mathrm{y}^{2}}{9}=1$ equation of director circle is $x^{2}+y^{2}=25 .$

This director circle will cut the ellipse $\frac{\mathrm{x}^{2}}{50}+\frac{\mathrm{y}^{2}}{20}=1$ at $4$ points hence number of points $=4.$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.