Number of points on the ellipse $\frac{{{x^2}}}{{50}} + \frac{{{y^2}}}{{20}} = 1$ from which pair of perpendicular tangents are drawn to the ellips $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{9}} = 1$

  • A

    $0$

  • B

    $2$

  • C

    $1$

  • D

    $4$

Similar Questions

If $x^{2}+9 y^{2}-4 x+3=0, x, y \in R$, then $x$ and $y$ respectively lie in the intervals:

  • [JEE MAIN 2021]

Let $T_1$ and $T_2$ be two distinct common tangents to the ellipse $E: \frac{x^2}{6}+\frac{y^2}{3}=1$ and the parabola $P: y^2=12 x$. Suppose that the tangent $T_1$ touches $P$ and $E$ at the point $A_1$ and $A_2$, respectively and the tangent $T_2$ touches $P$ and $E$ at the points $A_4$ and $A_3$, respectively. Then which of the following statements is(are) true?

($A$) The area of the quadrilateral $A_1 A _2  A _3 A _4$ is $35$ square units

($B$) The area of the quadrilateral $A_1 A_2 A_3 A_4$ is $36$ square units

($C$) The tangents $T_1$ and $T_2$ meet the $x$-axis at the point $(-3,0)$

($D$) The tangents $T_1$ and $T_2$ meet the $x$-axis at the point $(-6,0)$

  • [IIT 2023]

If the normal at an end of a latus rectum of an ellipse passes through an extremity of the minor axis, then the eccentricity $e$ of the ellipse satisfies

  • [JEE MAIN 2020]

How many real tangents can be drawn to the ellipse $5x^2 + 9y^2 = 32$ from the point $(2,3)$

Let an ellipse with centre $(1,0)$ and latus rectum of length $\frac{1}{2}$ have its major axis along $x$-axis. If its minor axis subtends an angle $60^{\circ}$ at the foci, then the square of the sum of the lengths of its minor and major axes is equal to $...........$.

  • [JEE MAIN 2023]